29
Abr
10

Producto potencial y recesiones en México

Por Gerardo Esquivel y Williams Peralta

El nivel del producto potencial se define comúnmente como el nivel de producción en el que una economía produciría si se encontrara en una situación de “pleno empleo” o en “la tasa natural de desempleo”. En la práctica, el producto potencial usualmente se calcula utilizando un filtro estadístico y la brecha del producto u “output gap” es la desviación porcentual del producto  observado en relación a su nivel potencial.

En particular, el filtro de Hodrick y Prescott (1997) (HP, de aquí en adelante) es el que se utiliza con mayor frecuencia para obtener la tendencia de la producción en un determinado momento y, para ello, utiliza información tanto pasada como futura. Sin embargo, cuando las observaciones futuras son relativamente escasas, el filtro HP a menudo no logra medir en forma apropiada el componente cíclico de la producción. Este problema es importante en las partes finales de la muestra, lo cual suele ser el punto más relevante desde la perspectiva de la formulación de políticas, ya que éste indica el nivel de la brecha de producción actual.

En la literatura existen por lo menos dos alternativas para tratar este problema: el filtro de St. Amant y van Norden (1997) y el filtro de Christiano y Fitzgerald (2003). Estos dos métodos son mejores que el filtro HP para tratar con el “problema al final de la muestra” (véase, por ejemplo, Antón, 2010).

El Filtro de Hodrick – Prescott (HP)

Sea y el logaritmo del PIB real en cada periodo t. Entonces, el filtro HP descompone esta serie de tiempo en un componente cíclico (y*) y una tendencia. Para obtener la tendencia del filtro HP se tiene que minimizar  la función objetivo:

El parámetro λ define la suavidad de la tendencia. Es decir, mientras mayor sea el valor de λ, más suave será el componente de tendencia. Es obvio que si  λ = 0 simplemente la tendencia será igual a la serie original. Mientras que si λ tiende a infinito, la tendencia se corresponde a una línea recta. Para los datos trimestrales, el valor convencional de λ es de 1600.

El Filtro St – Amant Van Norden (SAVN)

El filtro SAVN es una extensión del filtro de HP. Este método consiste en incluir una condición adicional al problema de minimización:



El nuevo término castiga la desviación de la tendencia de crecimiento en relación con la tasa de crecimiento del producto a largo plazo en la parte final de la muestra. Hay dos nuevos parámetros en el problema de minimización: la tasa de crecimiento a largo plazo de la serie (constante determinada por el investigador) y el parámetro de sanción λss, que suaviza la tendencia en las últimas j observaciones de la muestra.

El Filtro Christiano – Fitzgerald (CF)

Christiano y Fitzgerald (2003) proponen un método basado en un filtro de bandas para la recuperación de la tendencia de las series de tiempo con una periodicidad que va de un límite inferior (pl) a uno superior (pu). Este filtro requiere una cantidad infinita de datos para derivar  una tendencia óptima. Por lo tanto, el filtro propuesto es una aproximación lineal del filtro óptimo. Para descomponer la serie original se supone que los datos son generados por una caminata aleatoria (esta aproximación es falsa en muchos casos) y la expresión a estimar es la siguiente:

Donde los coeficientes de Bt son las ponderaciones que tienen las variables en el tiempo y que son funciones de pl y de pu. Es indudable que el filtro CF también está expuesto al problema  del  “final de la muestra”, pero incluso considerando este problema se ha señalado que la estimación con el filtro CF de la brecha del producto se comporta mejor que la metodología del filtro HP (Antón, 2010; Christiano y Fitzgerald , 2003).

Resultados

Los resultados de la aplicación de las tres metodologías anteriores al caso mexicano para el período que va de 1989 a 2009 se muestran en el siguiente gráfico:

Por su parte, las correspondientes brechas de producto son las siguientes. Los tres primeros periodos sombreados corresponden a las definiciones de recesión en México identificadas en Acevedo (2009), mientras que el último periodo es una estimación propia.

Nótese que de acuerdo a estas estimaciones, la recesión en México habría terminado en el segundo semestre de 2009 y la brecha del producto se habría reducido de manera importante en los dos trimestres más recientes.

Gerardo Esquivel es Doctor en Economía por la Universidad de Harvard. Actualmente labora como profesor – investigador en El Colegio de México. Williams Peralta es Maestro en Ciencias Económicas. Actualmente estudia el Doctorado en Economía en El Colegio de México


3 Responses to “Producto potencial y recesiones en México”


  1. 24 julio, 2012 a las 16:09

    This post is genuinely a pleasant one it assists new web visitors,
    who are wishing for blogging.

  2. 28 enero, 2013 a las 08:16

    Greetings I am so glad I found your site, I really
    found you by accident, while I was looking on Yahoo for something else, Anyways I am
    here now and would just like to say kudos for a
    fantastic post and a all round enjoyable blog (I also love the theme/design), I don’t have time to look over it all at the moment but I have book-marked it and also included your RSS feeds, so when I have time I will be back to read more, Please do keep up the superb job.

  3. 3 antonio rojas
    25 noviembre, 2015 a las 15:12

    Que tal, estudio economía en la UNAM y me interesa calcular el filtro SAVN. Me ayudaría mucho si me dice cómo lo calculó (en qué programa y qué pasos siguió).
    saludos


Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s


A %d blogueros les gusta esto: